
Pizza Hot Digital Order and Delivery System

A Design Project Report 

Presented to the School of Electrical and Computer Engineering of Cornell University

In Partial Fulfillment of the Requirements for the Degree of 

Master of Engineering, Electrical and Computer Engineering

Submitted by

Taihang Ye (ty322), Junyin Chen (jc2954), Baoyue Wang (bw476)

MEng Field Advisor: Joseph Skovira 

Degree Date: May (t322), Dec(jc2954, bw476), 2016

Abstract

Master of Engineering Program 

School of Electrical and Computer Engineering

Cornell University 

Design Project Report

Project Title: Pizza Hot Digital Order and Delivery System

Author: Taihang Ye, Junyin Chen, Baoyue Wang

Abstract:

This project is aimed to provide a customized solution of quicker and

more satisfying food order and delivery system under the digital

business trend. For the food order part, a “Pizza Hot” website and

mobile applications are implemented for customers to view dishes and

place orders. Meanwhile, restaurant managers are able to manage

dishes, orders, comments by logging in the website management

dashboard. For the food delivery part, an intelligent delivering system

is built, including a mobile application for delivery staff and a smart

delivery box integrated with a microcontroller temperature sensor, Wi-

Fi and GPS modules, which can show temperature of pizza, time, and

current location on the screen as well as navigate delivery staff to next

delivery by audio output.

Distribution of Work

For the report, individual contribution is shown below.

Table 0-1. Individual contribution sections

For the project, individual contribution is shown below

 Webpage

Front

End

Webpage

Back End

Mobile

App for

Customers

Mobile

App

for

Driver

PIC32

Development

Amplifier

Design &

Implementation

Taihang ✓ ✓ ✓

Junyin ✓ ✓ ✓

Baoyue ✓ ✓

Table 0-2. Individual contribution for the project

 Introduction System

Design

Implementation Tests

&

Results

Issues Future

Work

Conclusion

Taihang 2.1

2.3.2

2.3.3

3.2.2

3.2.3

4.2

4.3

5.3 7

Junyin 2.2 3.1 4.1

4.3

5.1

Baoyue 1 2.3.1 3.2.1 4.2 5.2 6

Executive summary

Pizza Hot is aimed to provide

1) an order system on multi-platforms for customers to select dishes and place orders

2) a convenient management dashboard for restaurant manager to easily manage the

whole system

3) a smart delivering system for helping delivery staff improve the quality of delivery

service.

The Order system contains two parts: a responsive website and a mobile application

launched both on Android and iOS platforms.

● The website is implemented using Ruby on Rails as the backend with

functionalities including viewing dishes, adding dishes into shopping cart, placing

orders and writing feedback for the restaurants.

● The mobile application is implemented in a hybrid way which can be deployed on

both Android and iOS platforms using Apache Cordova, AngularJS and Ionic

Framework. It includes several modules such as viewing dishes, adding comments,

adding dishes to users’ favorite list, reserving a table in the restaurant, registration

and login, which are really similar to the website mentioned in the first bullet.

The management dashboard is part of website for the restaurant manager, which realized

functionalities such as managing order status, view customers’ feedback and inviting new

administrators.

The Smart delivery system contains a customized mobile application for delivery staff

and a smart delivery box which can detect the temperature inside the box in real time.

Besides that, the system can load the routing data of an order so it can navigate for the

driver, the turning notification is on audio basis. Everything a delivery man wants is

integrated into this hand-free device.

Table of Contents

Abstract

Distribution of Work

Executive summary

1. Introduction ... 1

1.1 Design Alternatives ... 1

2. System Design .. 2

2.1 High-level Design ... 2

2.2 Hardware System Design .. 3

2.2.1 PIC-32 Microcontroller .. 4

2.2.2 GPS Module ... 5

2.2.3 WIFI Module ... 6

2.2.4 Temperature Sensor ... 7

2.2.5 Audio Output ... 7

2.2.6 User-Interface: TFT-Screen & Buttons ... 8

2.3 Software System Design ... 8

2.3.1 Website Design .. 8

2.3.2 Hybrid Mobile Application for Customers .. 9

2.3.3 Mobile application for drivers ... 11

3. Implementation ... 11

3.1 Hardware System Implementation .. 11

3.1.1 Interfacing PIC32 microcontroller, GPS Module, and WIFI Module 11

3.1.2 Porting DS18S20 one-wire sensor to PIC32 .. 13

3.1.3 Audio Output Implementation ... 15

3.2 Software Implementation .. 16

3.2.1 Website implementation .. 16

Figure xx-b Add new dishes ... 21

Figure xx-a Manage existing dishes ... 21

3.2.2 Mobile application implementation ... 22

3.2.3 Mobile application for delivery staff implementation 27

4. Tests and Results... 28

4.1 Hardware Test and Results ... 28

4.2 Software Test and Results ... 30

4.3 Integrated Results.. 31

5 Issues we meet ... 33

5.1 Hardware issues .. 33

5.2 Website issues ... 34

5.3 Mobile applications ... 35

6. Future work ... 36

7. Conclusion .. 36

Acknowledgement

Reference

Appendix

1

1. Introduction

Nowadays, digital business platforms are very popular and save us much effort and time

in our daily life. E-commerce companies such as Amazon and Ebay could deliver goods

to customers very efficiently. On the one hand, customers could select goods and place

orders online without visiting the shop, which is usually time-consuming. Besides, they

do not need to carry the goods to home. Instead, the shop would deliver the goods and

save customers’ efforts. On the other hand, using digital business platforms could make it

more convenient for shop owners to manage orders, collect and analyse data and provide

better service. In the catering industry, the demand of combining the convenience of

digital business with their traditional delivery service is increasingly growing. Unlike

common e-commerce companies, the restaurants usually could deliver food in less than

half an hour and actually saves customers’ time when compared to visiting the restaurants.

In order to stand out in the digital business trend of catering industry and provide more

satisfying service, we designed this Pizza Hot project. Customers usually expect fast

delivery and food in good condition to eat. So in order to adapt to customers’ expectation

and earn more profits for restaurant owners, we improved the traditional digital business

platform. In addition to the general functionalities of e-commerce platform, we developed

a hardware system which is intended to be put in the delivery box. After the restaurant

receives customers’ orders and the dishes are ready to deliver, the delivery man put the

portable system in the delivery box. The system could record the temperature in the box

and the time of delivery. After the dishes arrives, it will calculate a suggested tip for

customers based on temperature, time and distance the delivery man covered. If the

food’s temperature is suitable, the tips could be higher and otherwise the system gives a

discount. In this way, we could realize a win-win relationship between customer and

restaurants. Customers can expect fast delivery and hot food. Restaurants can make more

money by providing good service, which also helps them stands out among competitors.

Delivery staffs will be provided information for more efficient operations such as turn by

turn navigation.

1.1 Design Alternatives

We want to implement a responsive website for customers to view dishes, place orders

and send feedback to restaurants. We also want to implement functionalities such as

managing orders, inviting new admins and viewing feedback for admin. There are several

options for the website implementation. For the frontend, the first one is not using any

framework and developing the CSS from draft. This approach requires great ability of

developing responsive website and design experience. The second one is using Bootstrap

framework. The framework is easy to use and has many default styles for website

elements such as forms and buttons. Therefore, we chose to implement the website using

Bootstrap. For the backend, there are many options. With three of the most popular

options, PHP, Java and Ruby on Rails. By using Ruby on Rails, we could add new

features easily and do agile development. So we chose Ruby as our backend language.

2

We want to design mobile applications for customers to view dishes, leave their

comments and make reservations online. There are several ways to finish this task. The

first one is sticking on the web site we developed and let customers to visit our website

on the mobile devices because of responsive web design we used in our website, which is

the slowest and fully hosted in the mobile browser. The second approach we can use is

develop fully native mobile applications for both Android, iOS device and even windows

phone which would acquire highest performance. The third approach which we selected

is packaging mobile application development using css, javascript and html into a native

wrapper and delivering it as a native application--Hybrid mobile application, which is

slow but comparable to native applications based on functionality and has some access to

device capabilities.

Fig 1-1 design choice

Hardware design choice would be covered in part 2.1.

2. System Design

2.1 High-level Design

The whole system works as following steps:

1) The customers will visit our website or mobile applications to select the pizza

they like and place the order.

2) The order will send to the server side and restaurant manager is able to manage

detail information and status of orders.

3) Delivery staff will driver’s mobile application and smart delivery box to help

them navigate to the right locations with optimized path from Google.

4) The customers will receive their “hot” meal with temperature showing on the

smart delivery box.

3

Fig 2-1 High Level Design of System

2.2 Hardware System Design

High-level hardware design and software to drive these hardware are discussed in this

section. For pure software part, website and mobile apps, please refer to 2.3 Software

System Design. More details about implementation would be covered in chapter 3.1

hardware implementation.

Fig 2-2 Hardware System Block Diagram

4

Above is the block diagram for the entire hardware system. DS18S20 temperature sensor

is used to measure the temperature inside the delivery box. Adafruit GPS module

provides raw data from satellite to microcontroller for locating driver’s position.

ESP8266 WIFI Module is running as a server. Basically, it connects to an access point,

known as a WIFI hotspot which is created by the mobile phone, then reads routing data

from Google maps and sends it back to the microcontroller.

PIC32 Microcontroller is used as the central control unit, it collects data from GPS

module, sensor, and WIFI-Module, processes them, then sends processed data to the user

interface. The user interface consists of screen, two buttons, and audio output.

Specifically, TFT screen displays processed data from microcontroller so users can

actually see them. Two buttons are used to select working modes of microcontroller, for

example, navigation mode. Audio output is used in the navigation mode, so the user

would be notified to turn left or turn right at specific positions without getting into the

trouble of taking look at the screen all the time.

2.2.1 PIC-32 Microcontroller

Microcontroller is the central control unit for this project. Among various kinds of

microcontrollers, PIC32 microcontroller was picked mainly because it’s a 32 bit

microcontroller, able to process data faster, and its tiny volume supports a more

compacted project.

More specifically, PIC32MX250F128B was used. One good feature of this

microcontroller is, pins could be used flexibly, one specific pin could be used as general

purpose I/O pin, or UART transmission, or even analog output. Some features and

parameters of this microcontroller are listed in the table below [1].

Device PIC32MX250F128B

Max Operation Frequency 50 MHz

Flash 128KB

SRAM 32KB

Operation Temperature - 40 °C ~ 105 °C

Operation Voltage Range 2.3 V ~ 3.6 V

Pins 28

Table 2-1 PIC32MX250F128B Specification Summary

We are using Microstick II as supporting hardware for this microcontroller chip. It has

MCP1727 voltage regulator, a mini USB interface for programming/debugging/power

supply, one reset button, and peripheral resistors/capacitors. The main purpose of

regulator is to interface 5V USB power supply and 3.3V microcontroller chip. It has 1.5A

5

output current capability, multiple standard fixed output voltages support [2].

Programming and supplying power becomes much easier with the support of Microstick.

Testing/debugging becomes less complicated as well because the package of this small

board is breadboard friendly, and reset button onboard provides one-click trouble-free

reset solution for user. Below is the picture of Microstick.

Fig 2-3 Microstick II

2.2.2 GPS Module

Adafruit Ultimate GPS Breakout module is used for our project. It’s the core module to

find the location of user. We are using this module because it’s 3.3V - 5V compatible, it’s

breadboard friendly, it starts up fast, typically within 2 minutes, and it has an LED output

to indicate fix status [3]. Fix status, in easy words, essentially shows how you are tracked

by the satellites. Typical fix status contains no fix, 2D fix, and 3D fix.

The protocol this device uses is NMEA 0183 standard. NMEA 0183 is a combined

electrical and data specification for communication between marine electronics such as

echo sounder, sonars, anemometer, gyrocompass, autopilot, GPS receivers and many

other types of instruments. It has been defined by, and is controlled by, the National

Marine Electronics Association. It replaces the earlier NMEA 0180 and NMEA 0182

standards [4].The communication interface of this module with peripheral circuits is

UART. UART is the abbreviation for Universal Asynchronous Receiver/Transmitter,

which is commonly used in serial communication between computer systems.

Once the power is supplied for the GPS module, it begins sending out NMEA stream,

regardless of the status of the receiving device. Even if no satellite has been assigned for

finding the location of user, transmission of NMEA stream would not be stopped, instead,

the NMEA stream being sent at this stage contains information showing no fix type.

Among different sentences of NMEA stream, we pick sentences begin with $GPGGA to

get information. Below is an example translation of $GPGGA NMEA sentence [5]:

6

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

GPGGA Global Positioning System Fix Data

123519 12:35:19 UTC

4807.038,N Latitude 48 deg 07.038' N

01131.000,E Longitude 11 deg 31.000' E

1 Fix quality: 0 = invalid, 1 = GPS fix (SPS)

08 Number of satellites being tracked

545.4,M Altitude, Meters, above mean sea level

46.9,M Height of geoid (mean sea level) above

WGS84

Table 2-2 Example translation of GPGGA NMEA sentence

Above example demonstrates parsing GPGGA sentence is adequate to collect data we

need for navigation, especially longitude and latitude.

2.2.3 WIFI Module

The WIFI module we are using is Adafruit HUZZAH ESP8266 breakout. It has a reset

button, a user button to boot load the module, UART interface, and 3.3 V out, 500mA

regulator. We used Arduino IDE to program it so it runs as a server for our specific

application.

Fig 2-4 WIFI Module Program Flow Chart

First, in the setup stage, we set the baudrate to be 115200 to improve the throughput of

data. Then the WIFI module needs to connect an access point, ssid and password needs to

be specified. In our case, we used personal mobile phone to create a hotspot, ssid is the

7

hotspot name the user creates, and password is the password for the hotspot. After setting

the module run in server mode, it goes into server loop. In the server loop, the specific

task this module completes in our project is, accept client socket created by mobile-phone

application first, then receive data from client socket, process the data, then send

processed data to microcontroller via UART connection.

2.2.4 Temperature Sensor

The temperature sensor we are using is DS18S20 temperature sensor. Compared to

traditional analog sensor, this sensor does ADC inside itself and represents information

about temperature in digital form, so it’s much more robust and much less sensitive to

noise. This sensor has ±0.5°C accuracy from -10°C to +85°C. This sensor is using one-

wire protocol to communicate with other device. Though, it is just a sensor, it also has

inner ROM and it has its own command system, in other words, it is programmable.

There is no built-in one-wire protocol for PIC device, so we picked several instructions

below:

1) Reset

2) Write 0xCC - Skip the ROM

3) Write 0xBE - Start ADC Conversion

4) Read - Each time 1 byte

Details for the timing of this temperature sensor would be covered in the implementation

detail chapter.

2.2.5 Audio Output

Since we are implementing navigation function on turn-by-turn basis, it makes little sense

if the user has to look down at the screen all the time. Hence, we designed an audio

output block for our design. The schematic of this block is shown at the next page.

Fig 2-5 Schematic for amplifying circuit

8

The 39μf and 100μf capacitor are used to remove DC components of the audio. Since the

audio we are generating is a voltage signal from an analog output pin, ranging from 0 ~

1.2V, we need an amplifier with good performance both in current and voltage. Hence,

common emitter amplifier is chosen. Based on our experiment and trade-off between the

gain and distortion, 180K and 1K resistor are picked for the amplifier. 2K resistor and

0.047μf capacitor makes up a low-pass filter, which is used for suppressing high

frequency noise.

The output is soldered with an audio jack. The reason for not choosing a speaker is:

1) Audio jack is more flexible, some speakers support audio jack, but directly

soldering onto a speaker gives no chance to go back to earphone.

2) The DAC for audio output is only 4 bits. In other words, output voltage only has

16 different levels, therefore it’s not very consistent, in other words, it has much

harmonic and it affects audio quality. Earphones typically suppress noise, while

speakers work in the opposite way. Earphone definitely performs better in

suppressing harmonics.

2.2.6 User-Interface: TFT-Screen & Buttons

Blocks covered in section 2.2.1 - 2.2.5 are doing background jobs. The user needs

somehow a way to know temperature, position, and navigation data in a straightforward

manner. Also, they need the interface, as simple as possible, to switch back and forth in

different pages of screen. We use Adafruit TFT screen to display information, and two

push buttons to control the state machine. We use the Adafruit TFT library ported to

PIC32, written by tahmid, as the driver of screen [6].

2.3 Software System Design

The software system involves a website, Android and iOS mobile applications for

customers and mobile application to help navigation.

2.3.1 Website Design

2.3.1.1 Website workflow

The website is designed for both users and restaurant owners. For users, they could view

menu and select dishes. After that, they could complete a form of personal information

and place order. The transaction workflow of users is as described in Figure 1. For

restaurant owners, we require a login for their access to the management panel. On the

management panel, they can view and manage the status of orders. In addition, they

could add more administrators to help them with management. The workflow of

managers is as described in Figure 2-5.

9

Fig 2-6: Webpage Flowchart of User

Fig 2-7: Webpage Flowchart of Admin

2.3.2 Hybrid Mobile Application for Customers

2.3.2.1 Software stack

The Software stack we used for building the mobile applications targeting different

platforms is as follows

10

Fig 2-8 Software Stack

The ionic framework is the HTML SDK to help build apps with native look and feel,

which uses AngularJS and mainly focuses on the front-end. The ionic framework uses

Angular directives, native styled elements and Sass to build a mobile-optimized HTML5

and CSS3 based UI elements.

Apache Cordova [7] allows for building native mobile applications using HTML, CSS

and JavaScript. This tool helps with management of multi-platform Cordova applications

as well as Cordova plugin integration.

2.3.2.2 Mobile Application MVC framework

Fig 2-9 Mobile Application MVC framework

11

2.3.3 Mobile application for drivers

This mobile application also makes use of ionic framework, which references an example

project on Evothings Studio [8] tutorial. This application is mainly for delivery staff to

use which will help them navigate to the right delivery location.

Fig 2-10 Mobile app for drivers

3. Implementation

3.1 Hardware System Implementation

3.1.1 Interfacing PIC32 microcontroller, GPS Module, and WIFI Module

Communication among PIC32 microcontroller, GPS Module, and WIFI module is

implemented through UART. UART channel 1 of PIC was linked to WIFI module, and

channel 2 was linked to GPS Module. Note that two channels are different. Usually,

UART2 was mapped to pin 21 and pin 22, they are 5V tolerant, but UART1 pins are not

5V tolerant. Though the WIFI module outputs 3.3V voltage, one 3K resistor must be

connected in serial to limit the current, otherwise pins might be burnt. Below is the

schematic for interfacing PIC, GPS Module, and WIFI Module.

12

Fig 3-1 schematic for interfacing PIC, GPS, and WIFI Module

As mentioned in chapter 2, GPS module actually keeps sending NMEA Streams out in

spite of what is happening, WIFI module just receives data from mobile app, then sends it

back to PIC. PIC only has 32KB SRAM, apparently it does not have enough memory to

store all of data GPS and WIFI module send to it. However, the stream interpretation part

of code has to be executed only if complete message has been sent. To solve this

concurrency problem, we are porting protothreads, originally written by Adam Dunkels

[9], with some specific hardware support (timers, etc) for PIC32 added by Professor

Bruce Land [10], to our project.

There are 3 threads in the program, one for GPS UART, one for WIFI UART, and one

for GPS Navigation. GPS UART just spawns a child thread and yields. The child thread

spawned by GPS UART is for reading the stream from GPS UART to the GPS buffer,

one character by one character, until it reads the ‘\n’ sign, indicating next sentence, then

clears the buffer, restarts the procedure above. For the time one character arrives but new

character is not, the child thread yields, so the transmission is non-blocking. A GPS

buffer of 256 bytes is safe enough to accommodate one complete GPS sentence being

parsed by GPS interpreter sub-block, and the protothread yields in the time gap between

characters to guarantee the concurrency, in this way the contradiction mentioned in the

paragraph above is solved.

The idea for solving the contradiction of memory limitation and concurrency is similar

for WIFI thread, except the data structure to implement this is different. Since the

objective of WIFI thread is to provide route data for navigation, the mobile app is sending

the data on a waypoint basis, and all of waypoints must be properly stored to guarantee

correct function of navigation. We are using linked list to store waypoints data. When the

13

route is being load, it dynamically allocates memory for each waypoint, and when the

navigation has finished, routing data would be freed.

Navigation thread starts running when the state machine jumps into navigation state. It’s

comparing the user’s position with the next waypoint, when it’s closed enough, it outputs

an audio to notify the user to turn. The background math for computing the turning angle

is shown below.

Fig 3-2 Background math for navigation

3.1.2 Porting DS18S20 one-wire sensor to PIC32

The DS18S20 temperature sensor is using one-wire protocol to communicate with

peripheral devices. The bus remains high-level when the bus status is idle. However,

there is no existing library for one-wire protocol. As mentioned in chapter 2, the sequence

to get DS18S20 working is:

1) Reset

2) Write 0xCC – Skip the ROM

3) Write 0xBE – Start ADC Conversion

4) Read – Each time 1 byte

Below we expand on this set up functions.

14

Reset

The function of reset is handshaking of two device. According to DS18S20 datasheet, the

timing goes like the following [11]:

1) Host (PIC32) pulls down the bus for at least 480 µs.

2) Host releases the bus for at least 15 – 60 µs.

3) If client (Temperature sensor) is present, the client pulls down bus for 60 – 240 µs.

4) The host samples the bus.

5) Client releases the bus.

6) An interval of at least 480 µs for the recovery of bus.

Write

Writing or reading a specific value to or from the device is based on writing 0/1 or

reading operation. Expanding writing or reading operation is of trivial work once the

most basic writing or reading operation behaves correctly.

The write operation of 1 bit must stay for at least 70 µs. Based on DS18S20 datasheet and

our experiment, the timing of writing which works in our implementation goes like

following [11]:

Writing 0:

1) Host pulls down the bus for at least 65 µs.

2) Host releases the bus.

3) Client samples the bus.

4) Delay 5 µs for recovery of bus.

Writing 1:

1) Host pulls down the bus for at least 5 µs.

2) Host releases the bus.

3) Client samples the bus.

4) Delay 65 µs for recovery of bus.

It is worth pointing out that writing an instruction is on byte-by-byte basis. So group

every 8 write operation as one byte write is a good idea.

Read

Read operation has the following timing [11]:

1) Host pulls down the bus for 5 µs.

2) Hold 2 µs until the bus state becomes stable.

3) Host samples the data.

4) Host wait for 65 µs for next read cycle.

First 8 bits from sensor are low 8 bits. Second 8 bits are high 8 bits. The raw data is

formatted in the following way [11]:

15

Fig 3-3 Raw Data Representation

To interpret this raw data, shifting low 8 bits by 1 bit gives decimal part of the

temperature, while least significant bit in low 8 bits makes fractional part. If the high 8

bits is 0, it means the temperature is under 0 degree in Celsius. To get more robust result,

we added a software median filter which picks the median value of temperature every 3

cycles.

3.1.3 Audio Output Implementation

We discussed about the amplifying circuit in the previous chapter. However, the

soundwave needs to be generated in the first place. We are using pin 25 of the PIC to

output analog signal. The register that controls this pin is CVRCON. The following table

explains the functionality of each bit of this register [12].

Fig 3-4 Register Representation

16

And we set the register bits as:

Bit 15: 0, disable the module.

Bit 14-11: 000

Bit 10: 0, using inner reference voltage.

Bit 9-8: 00, using 0~1.2V bandgap reference.

Bit 7: 0

Bit 6: 1, enable the output of pin 25.

Bit 5: 1: 24 steps.

Bit 4: 0, use full range comparator.

Bit 3-0: keeps changing to output different levels of analog voltage.

So, in our implementation, bit15-bit4 is fixed at the value of 060 in hexadecimal, or 96 in

decimal. Lowest 4 bits are playing a role as a 4-bit DAC. By changing the value of

Lowest 4 bits properly, the expected sound wave could be generated.

However, direct digital synthesis for human voice is extremely hard, and our way of

deriving data to send to CVRCON register is:

1) Pre-recorded human voice

2) Convert the format to wav file

3) Read wav file in MATLAB

4) Cut one audio rail data

5) Scale and round the data 0 - 15 in decimal

6) Add the converted value with 96 to coordinate with Bits 15-4

7) Exporting the data as an array that is usable by microcontroller

8) Use DMA channel to send data in the array to CVRCON register

For doing step 3) - 7), we revised the example code [13] in ECE 4760 as listed in the

reference.

Based on our experiment, the best way to generate empty sound, instead of disable the

DMA, is sending a constant value (in our case it’s 107) to CVRCON. The idea is to add

DC offset so little noise is raised to higher voltage, so the noise together with DC offset

could be filtered all at once. Otherwise, noise at low voltage is hard to filter. This

increases the power consumption but effectively suppresses the noise when no audio

should be generated.

3.2 Software Implementation

3.2.1 Website implementation

The layout of the website is implemented by Bootstrap, HTML, CSS and JavaScript. We

implemented the functionalities by using Ruby on Rails [14]. The functionalities of the

website are included as follows:

17

3.2.1.1 Add dishes functionality

After the user selects a dish, the system pop up the shopping cart window. Users can view

their selected dishes here. The dish and the quantity the user set will be add to the cart.

3.2.1.2 Edit cart functionality

The line-item folder implements the functionality of editing the products in the shopping

cart. By clicking the shopping cart button, users can change quantity of the products they

put in the cart or delete products.

Fig 3-5 Shopping cart page-User function

3.2.1.3 Place orders and manage orders functionality

The orders folder realizes the functionality of checkout for users and order management

for admins. For the users, when they decide to checkout they must fill in a form with

details of the order. It includes displaying the name, email, phone number, address. For

the admins, they can view the list of orders and details and status of each order. The

admin can delete orders or mark the order as shipped using the buttons on each record of

the order list.

Fig 3-6 Place an order-User function

18

Fig 3-7 List of Orders-Admin function

Fig 3-8 View Order-Admin function

19

3.2.1.4 Order status notification functionality

After users place their orders successfully, users will receive a confirmation email, which

notifies them their orders have been received. After the admins change the order status to

shipped, the system also sends a notification email to notify them about status. The

functionality is implemented in order_notifier folder.

Figure 3-9 Order status

Figure 3-10 Email notification

3.2.1.5 Contact restaurant functionality

The contact folder realizes the functionalities of submitting feedback to the restaurant for

users and view feedback for the admins. If users successfully submit their feedback forms,

the admin can view a list of feedback. They can choose to respond to the feedback then.

Figure 3-11a Feedback page

20

Fig 3-11b List of Feedback

3.2.1.6 Display dishes functionality

The products folder realizes the functionality of displaying menu and dishes dynamically.

The admin can put new dishes into different categories when they add new dishes. Then

dishes will be displayed under the categories they belong to dynamically.

Fig 3-12 List of Products

3.2.1.7 Manage admin functionality

The admin functionalities include three parts: invite users, show users list and delete

users. The functionalities of admin are in users’ folder, which includes edit.html.erb,

index.html.erb, new.html.erb and show.html.erb

21

Fig 3-13 Manage Admin

3.2.1.8 Add dishes functionality

Restaurant managers can add new dishes, edit or delete existing dishes.

 Figure 3-14a Manage existing dishes Figure 3-14b Add new dishes

22

3.2.2 Mobile application implementation

3.2.2.1 app.js functionality

The app.js plays an important role in the whole application as a manager. All the services

are injected here. Meanwhile, it configures ionic platform and prepares cordova

framework in order to start the application.

The app.js includes the following states and each of these states has corresponding

templates in the template folder and controllers in controller.js.

1) “home”

2) “aboutus”

3) “contactus”

4) “menu”

5) “favorites”

6) “dishdetails”

3.2.2.2 service.js functionality

1) The service.js is used to fetch the data from server. It has six services as follows

“localStorage”, “menuFactory”, “promotionFactory”, “corporateFactory”,

“feedbackFactory”, “favoriteFactory”.

2) The menuFacroty service is aimed to get specific dish using dish id, and

promotionFactory, corporateFactory, feedbackFactory are doing the similar things,

using its id to request the information from remote server.

3) The favoritesFacoty has a little difference, it will use localStoage service to get

the favorites customer has already selected and provides three functionalities

“addToFavorites” which is store the new favorite dish into customer’s favorite list,

“getFavorites” which just returns the favorite list and “deleteFromFavorites”

which would delete the favorites from the customer’s favorite list.

3.2.2.3 controller.js functionality

1) IndexController: it will provide baseURL, leader information, promotion

information and a loading message for the template, which will show those

information on the template.

2) MenuController: it contains select, isSelected, addFavorite functionalities. Select

is used to select menu category in the menu template. IsSelected is a function

taking checkTab as parameter and checking which category is selected and return

a boolean value (true or false). AddFavorite will add dishes to the favorite list and

show the notification both on the screen and notification area using

“cordovaLocalNotification” and “cordovaToast”.

23

3) DishDetailController: it has three parts. The first part is to provide a functionality

showing or hiding the dish-detail-popover.html, which uses “ionicPopover”

service. The second part is adding favorites to customer’s favorite list. The third

part is showing or hiding dish-comment.html, which provides customers a form to

submit their comment.

4) AboutusController: it provides the leaders information of the restaurant.

5) FavoritesController & favoriteFilter: it provides customer’s favorite list and the

functionality that can delete the favorites by using “ionicPopup” service. For the

favoriteFilter part, a filter is implemented to filter out favorites from all the dishes.

6) Login functionality: this functionality is implemented in three parts. The first part

uses “ionicModal” to call a login template. The second part includes “closeLogin”

and “login” is used to close or show the login template. The third part includes

“doLogin” function is used to check username and password.

7) Reserve functionality: this functionality is almost the same as the login

functionality described above.

8) Register functionality: this functionality is almost the same as the login

functionality described above except that it provides additional functionalities to

access device’s camera and gallery to take a picture or choose a exist picture in

user’s gallery. It make use of “cordovaCamera” and “cordovaImagePicker” plug-

ins to achieve these functionalities.

3.2.2.4 Templates

Fig 3-15 home.html

In the template, we will use “cards” from Google design guidelines [15] to display the

pizza’s information. We design the card element with the headline on the top part, image

as thumbnail on the left part, dish name, price and description on the right part. Also, we

show a badge beside the headline.

24

Menu.html

In menu.html, it contains two parts. The first part is a list of menu items, which has a

similar view with the card view in home.html. The second part is a tab region with four

different categories. When choosing different category, select() function will be called

and isSelected() function will change its boolean value. As the result, template will show

the different items in list part.

Fig 3-16 Menu in Mobile App

When choosing one dish in the menu list, it can swipe left to show a add button so that

customer can easily select this dish into favorites list. After adding the dish, it will notify

the user with a short message on the main screen saying “Add FavoriteXXX” as well as

on the notification area in the phone.

Fig 3-17 Add Favorite

Dishdetail.html

It has three parts. The first part uses “card” to display dish detail as following. The

second part shows the comments of this dish which can sort by date, author and star. The

third part includes two buttons, one is “Add to Favorites” which has similar functionality

25

described in menu.html, and the other is “Add comment” which will show a comment

form for customers to comment this dish.

Fig 3-18 Dish Detail

Aboutus.html & Contactus.html

These two templates will just show the contact and restaurant information.

Fig 3-19 About us

26

Favorites.html

This template shows the favorite dishes that customer selects using favoriteFilter in

controller.js. It can remove the dishes by swiping the dish item left or click button on the

top-right corner, which will show a delete button.

Login.html

This template shows the login form which include Username and password fields which

is used for users to login in.

Fig 3-20 Login

Register.html

This template is to provide a registration functionality for user, including picture,

firstname, lastname, username, telephone number and email address.

Fig 3-21 Register Page

27

Reserve.html
This template provides customers a reserve functionality to reserve a table in the pizza

restaurant if they would like to go there and have hot pizza!

Fig 3-22 Reserve page

Sidebar.html

Here is navigation side menu template, which allows user having access to different

templates in the application.

Fig 3-23 Sidebar page

3.2.3 Mobile application for delivery staff implementation

This mobile application combined with smart box helps delivery staff to navigate from

one delivery place to another.

28

It has mainly three functionalities. The first one calls arduino.connect(IP, PORT, callback)

to set up a TCP connection between the smart box (server) and this mobile application

(client), which is used for transferring data from client to server.

Fig 3-24 Driver’s app, connection to WIFI

The second part gets start location and end location from the input, then call the google

map direction API [16] to get the overview path from start location to end location.

Fig 3-25 Sending the Route to the Box

The third part just transforms the overview path to the format that microcontroller needed

and calls writeLocationData(location) to send data to Wi-Fi module of smart box with

format “lat,40.000000,lon,45.000000\n”.

4. Tests and Results

4.1 Hardware Test and Results

For hardware, interfacing WIFI module, GPS module, PIC begins at reading character

level. It takes us long enough to find the frame error problem and WIFI module buffer

problem.

For audio output, after converting the audio wave to an array, we plotted the simulation

audio waveform in MATLAB to guarantee the wave we synthesized is correct. Below are

simulation waveforms plotted in MATLAB, very close to sound wave, but from the wave,

because the DAC is only 4 bits, we can anticipate the sound would not be very clear as

well.

29

Fig 4-1 Audio simulation waveform

For temperature sensor, we are testing the wave generated by PIC IO port on oscilloscope

to see whether it matches with waveform specified in the datasheet. And two images

below are example images on oscilloscope.

Fig 4-2 Reset and Write 0x44 Waveform

30

Recall from section 3.1.2, the reset timing of temperature sensor goes like:

1) Host (PIC32) pulls down the bus for at least 480 µs.

2) Host releases the bus for at least 15 – 60 µs.

3) If client (Temperature sensor) is present, the client pulls down bus for 60 – 240 µs.

4) The host samples the bus.

5) Client releases the bus.

6) An interval of at least 480 µs for the recovery of bus.

The first fig of fig 4-2 is the waveform for reset. Time unit is 250 µs one square. The

waveform and data sheet specification matches.

The second fig of fig 4-2 is the waveform of write 0x44 and reset. Since two devices need

to handshake before doing write, so the waveform is derived in a reset-write loop. In the

write part of waveform, pulse width for each bit is about to be 70 µs. The glitch between

two 0 bits being written is because of the 5 µs recovery delay time as mentioned in

section 3.2. Note we are writing from the least significant bit, so the oscilloscope might

read 00100010, but we need to read in the reversed order to know the actual data being

written, which is 01000100 in binary, or 0x44 in hexadecimal. The right part of second

fig of fig 4-2 is just one reset operation, compared to the first fig of fig 4-2, again it

matches the specification well.

For other results, see 4.3 for integrated results.

4.2 Software Test and Results

For the software, especially website we developed, we performed a bunch of test on that

including model test, controller test, integration test and mailer test. These test data is in

ruby test folder.

1) In the model test, we performed integrity constraint tests like “product attributes

must not be empty” as well as syntax test like checking the image format.

2) In the controller test, we check the business logic of each function like create,

update, show, delete is working correctly as expected.

3) In the integration test, we design a scenario to mimic the purchasing process of a

customer and test if there is anything wrong during the whole process.

4) In the mailer’s functionality test, we test whether after receiving the order, the

order notifier will send an email with subject “Pizza Hot receives your order” and

other fields like mail from and mail to. We also write the similar test after

shipping the order.

31

4.3 Integrated Results

1. Select Dishes

Customer can

select dishes both

on our website and

mobile applications

on either Android

or iOS platforms

2. Place Order

Customers can place

their order entering

their address, phone

number, email then

checkout

3. Email Notification

Right after customer

checkout, they will

receive a confirmation

email to confirm what

they have ordered, and

after shipping, they

will also receive an

email saying your

order is shipped.

4. View Order

The pizza restaurant

owner can check the

orders’ detail.

5. Deliver Order

The pizza restaurant

owner can decide

when to ship the

orders.

32

6. Find Path

Driver will enter the

start and end location

in the mobile

application which will

automatically get path

data, set up TCP

connection with WIFI

module in

microcontroller, and

automatically send

data to WIFI module.

7. Receiving and

Sending Data

WIFI module would

receive the data from

driver’s mobile and

buffers the data. Then

at about 100 characters

or so, it sends the data

through UART to

microcontroller all at

once.

8. Location and

Navigation

After microcontroller

receives the routing

data, it parses the

stream, then it loads

the route and it starts

navigation.

33

5 Issues we meet

5.1 Hardware issues

Issue1: Concurrency

UART transmission must be non-blocking so PIC would not be blocked when other tasks

need to be executed. We used protothreads for solving this problem.

Issue2: Frame Error

UART transmission of GPS module and PIC is not well compatible, after a while a frame

error will occur. If the PIC does not check the frame error and clean the error bit, UART

on PIC would be disabled.

Issue3: abs vs absf

In C program, abs function in built-in C library returns an integer while absf returns a

floating number. When we are trying to determine whether we are close enough to a

waypoint, if anyone is using abs to compute the distance would always have 1 degree

offset and the navigation would never work.

Issue4: Interfacing WIFI UART with PIC32

Though the UART of WIFI is 3.3 V, its output current is strong, and under certain

circumstances pins on PIC32 would be burnt. Thus a resistor of 3-5K to limit the current

is strongly recommended.

Issue5: Noise suppression

Though DC value would be filtered by our amplifying circuit, DC offset must be added to

raise noise to higher voltages so that noise could be properly filtered.

Issue6: WIFI module configuration

WIFI module is unable to receive the character from mobile phone and immediately send

it to PIC. A buffer must be placed for WIFI module to receive 100 characters or so, then

the WIFI module could send characters in the buffer all at once.

Issue7: Optimization level of PIC compiler

Sometimes pieces of codes like delay would be optimized away by the compiler. Also,

reading operation might always report the same value. Setting the compiler optimization

level to 0 and setting key reading variable as volatile type could solve the problem.

Issue8: Waypoint Implementation

Our navigation is based on waypoints, and our original implementation was inserting

waypoint by hand. It makes sense in local area, but it’s very tedious and time consuming,

34

even connecting Engineering Quad is very hard. However, it gives intuition of how

navigation should be implemented. Then we move on to call Google Map’s API for

computing the route and allocate memory dynamically. This saves memory and is much

more efficient. However, routes computed by Google Map might be invalid if original

place and destination is very close, and it contains more waypoints than you actually need.

For very local connection, for example, from Phillips Hall to Carpenter Hall, manually

inserting waypoints and doing navigation statically might be more efficient.

5.2 Website issues

Issue1: Front-end pipeline configuration

Solution: There are some tutorial online taught me how to configure the whole pipeline

for the frontend using bootstrap, jQuery, AngularJs and other items like font-awesome.

Issue2: User cases not defined clearly leads to redo the whole project.

Solution: First, we should ask ourselves what are the user cases, which would help us to

design the whole project. While doing the project, there must be more idea, so we can

combine them into the existed framework. At first, we just consider the dishes and orders,

as project progressing, we found we can add more functionalities like feedback, my

favorite dish list and reservation a table in restaurant.

Issue3: Email notification issue, like Google blocks out auto login and some other

tricky problems like “undefined method protect_against_forgery?”

Solution: try to setup google account not to block this application and substitute the

button_to with link_to solve “protect_against_forgery?” problem.

35

5.3 Mobile applications

Issue1: Don’t know how to use cordova camera and cordova image picker services

Solution: check API again and find how to trim the picture by using specific options.

options = {

 quality: 50,

 destinationType: Camera.DestinationType.DATA_URL,

 sourceType: Camera.PictureSourceType.CAMERA,

 allowEdit: true,

 encodingType: Camera.EncodingType.JPEG,

 targetWidth: 100,

 targetHeight: 100,

 popoverOptions: CameraPopoverOptions,

 saveToPhotoAlbum: false

 };

Issue2: Don’t know how to add a block of buttons

Solution: Check online tutorial and solutions to similar practice [17].

Issue3: Google map direction API returns thousands of data point in a json object,

don’t know how to limit the number of data points.

Solution: After checking all the attributes in json object, there is “overview_path”

attributes which contains primary points, so using this attributes and send it to

microcontroller. Below is an example of overview_path, which contains much less

waypoints.

overview_path: [{"lat":42.47437,"lng":-

76.54163000000001},{"lat":42.474180000000004,"lng":-76.542},{"lat":42.4741,"lng":-

76.54223},{"lat":42.47401000000001,"lng":-

76.54288000000001},{"lat":42.473870000000005,"lng":-

76.54345},{"lat":42.473760000000006,"lng":-

76.54362},{"lat":42.473710000000004,"lng":-

76.54365},{"lat":42.473710000000004,"lng":-76.54371},{"lat":42.47361,"lng":-

76.546},{"lat":42.47359,"lng":-76.54618},{"lat":42.473850000000006,"lng":-

76.54627},{"lat":42.47417,"lng":-76.54644}….]

Issue4: Evothings platform is updated recently, which makes TCP client on phone

fail to make a socket connection with TCP server on smart box.
Solution: There isn’t an effective solution to this problem, and the only way to solve this

is use laptop to try to set up TCP connection to server to see if it is working or not. If it is

working, which means Evothings platform version update is the only possibility causing

this problem. In the future, we should not arbitrarily update platform of mobile

application, especially for the beta version.

36

6. Future work

The system could get improved in several aspects in the future. The system could be

improved by enabling order delivery for many restaurants and customers. By now, our

project is able to deliver one order to one customer at a time. Next step could be for one

restaurant, the website sends several orders it receives in a time period. Then the

hardware system could figure out the best route based on customer’s location to deliver

several orders in one deliver process. A further improvement could be for several

restaurants which joined Pizza Hot, the hardware system would be able to collect orders

from them in a time period and deliver in one process. This could be more efficient. In

addition, the hardware system could be more portable and user-friendly. In each delivery

process, the delivery man picks several orders and get all of the information in the

hardware system. After an order is delivered successfully, the system would have the

ability to pick up another order automatically from the selected orders in this process. In

order to increase efficiency dramatically, the system would have the ability to choose the

best route of delivering all the orders. In addition, the system would be able to send back

real-time data to customers. In this way customers could get to know where their dishes

are and what the temperature of the food.

7. Conclusion

Pizza Hot is a highly integrated and advanced pizza order and delivery system. From

customers’ perspective, they have multiple choices to access our service either by website,

mobile application or telephone and get hot pizza in a relatively shorter time. From the

restaurant manager’s perspective, they will get orders information easily from the

management console, have access to add or modify the dishes’ detail and manage the

feedback from customers. From the delivery person’s perspective, they will get

navigation help from smart delivery box’s audio output and not worry the temperature of

pizza in the delivery box.

As described in executive summary, we realized most of the functionalities we designed

at the beginning and the passed tests successfully.

In conclusion, Pizza Hot food delivery system would provide a convenient, thoughtful

and reasonable way for customers to order pizza.

Acknowledgement
We would like to thank Professor Joseph Skovira for his instruction and advice on our

project. His insights always help us make our project unique and increase the commercial

value. Professor Skovira always response to our question with great enthusiasm. We

really appreciate his instruction to our project.

We would also like to thank Professor Bruce Land for his effort in helping us debug. He

has a very incisive intuition towards the bug and his advice is always very constructive.

Reference
[1] Microchip. (2016, April 11). PIC32MX1XX/2XX Family Data Sheet: [Online]

Available: http://ww1.microchip.com/downloads/en/DeviceDoc/60001168J.pdf

[2] Microchip. (2006, Dec. 08). MCP1727 Data Sheet: [Online] Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/21999b.pdf

[3] Adafruit. (2016, May 17). Adafruit Ultimate GPS: [Online] Available:

https://cdn-learn.adafruit.com/downloads/pdf/adafruit-ultimate-gps.pdf

[4] NMEA 0183. (2016, April 22). In Wikipedia, the Free Encyclopedia.

[Online] Available:

https://en.wikipedia.org/w/index.php?title=NMEA_0183&oldid=716577264

[5] GPSInformation.org. NMEA data (v3.01) [Online]:

http://www.gpsinformation.org/dale/nmea.htm

[6] S. T. Mahbub. (2014, Oct. 30). Tahmid’s Blog: Interfacing a color TFT display with

the PIC32MX250F128B: [Online] Available:

http://tahmidmc.blogspot.com/2014/10/interfacing-color-tft-display-with.html

[7] Apache Cordova. (2015). Apache Cordova API Reference: [Online] Available:

https://cordova.apache.org/docs/en/2.4.0/

[8] Evothings. (2016 May 2) Evothings Studio: [Online] Available:

https://github.com/evothings/evothings-studio

[9] Adam Dunkels. (2005 April 08). Protothreads: [Online] Available:

http://dunkels.com/adam/pt/

[10] B. R. Land. (2015 Oct. 14). Cornell University ECE4760, ProtoThreads and Timers

, PIC32MX250F128B: [Online] Available:

https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_Protothreads.html

[11] Maxim Integrated Products, Inc. (2015). DS18S20 High-Precision 1-Wire Digital

Thermometer Datasheet: [Online] Available:

http://datasheets.maximintegrated.com/en/ds/DS18S20.pdf

[12] Microchip. (2011 Nov. 29). Comparator Voltage Reference Manual: [Online]

Available: http://ww1.microchip.com/downloads/en/DeviceDoc/61109G.pdf

[13] B. R. Land. (2015 Aug. 12). Cornell University ECE4760, Vref as a DAC,

PIC32MX250F128B: [Online] Available:

https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_VREF_DAC.html

[14] Rubyonrails.org. Ruby on Rails Guides (v4.2.6). [Online] Available:

http://guides.rubyonrails.org/

[15] Google. Google design guiline: [Online] Available:

https://www.google.com/design/spec/components/cards.html

[16] Google. Google Map Direction API: [Online] Available:

https://maps.googleapis.com/maps/api/js?key=AIzaSyApQwIu4qtwE2uQGjYjaNLFa5_

DwrgYNNI&signed_in=true&callback=initMap

[17] Leuo-Hong Wang. Hybrid Apps Development (v3.3): [Online] Available:

http://hybridap.blogspot.com/2015/04/hybrid-apps33-buttons.html

http://ww1.microchip.com/downloads/en/DeviceDoc/60001168J.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21999b.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-ultimate-gps.pdf
https://en.wikipedia.org/w/index.php?title=NMEA_0183&oldid=716577264
http://www.gpsinformation.org/dale/nmea.htm
http://tahmidmc.blogspot.com/2014/10/interfacing-color-tft-display-with.html
https://cordova.apache.org/docs/en/2.4.0/
https://github.com/evothings/evothings-studio
http://dunkels.com/adam/pt/
https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_Protothreads.html
http://datasheets.maximintegrated.com/en/ds/DS18S20.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61109G.pdf
https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_VREF_DAC.html
http://guides.rubyonrails.org/
https://www.google.com/design/spec/components/cards.html
https://maps.googleapis.com/maps/api/js?key=AIzaSyApQwIu4qtwE2uQGjYjaNLFa5_DwrgYNNI&signed_in=true&callback=initMap
https://maps.googleapis.com/maps/api/js?key=AIzaSyApQwIu4qtwE2uQGjYjaNLFa5_DwrgYNNI&signed_in=true&callback=initMap
http://hybridap.blogspot.com/2015/04/hybrid-apps33-buttons.html

Appendix
Our Code is at github: https://github.com/taihangy/PizzaHotFinalVersion

The code structure:

1. Website Code: Website_Ruby_On_Rails

2. Mobile Application for customers: Mobile_App

3. PIC32 smart box code: PIC32_Smart_Box

4. PIC32 driver application: PIC32_Driver_App

https://github.com/taihangy/PizzaHotFinalVersion

